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The final approach to steady, viscous flow near a 
stagnation point following a change in 

free stream velocity 

By R. E. KELLY 
Aerodynamics Division, National Physical Laboratory, Teddington, Middlesext 

(Received 14 October 1961) 

The flow field near a stagnation point in two-dimensional, incompressible, vis- 
cous flow is considered to change with time in such a way that the inviscid flow 
is steady after some given finite instant of time. The final approach to steady 
flow throughout the field is shown to be characterized by exponential decay with 
time of perturbations from the steady velocity field. The characteristic factors 
in the exponents arise from the solution of an eigenvalue problem in ordinary 
linear differential equations. 

Similar behaviour exists for the axially symmetric case. A comparable analysis 
furnishes, however, a meaningless result in the case of a two-dimensional, semi- 
infinite flat plate which is moving in its own plane, normal to its leading edge. 

1. Introduction 
Unsteady viscous flow investigations to date fall generally into one of two 

classes of problem. In the first class, the free stream velocity changes at  every 
instant of time, often in a periodic manner (e.g. Lighthill 1954). In  the second 
class, the body accelerates, often impulsively, from rest (e.g. Stewartson 1951). 

The present problem concerns incompressible flow near a stagnation point 
for a variation with time of the free stream such that the inviscid flow is steady 
after some given finite instant of time. An investigation is made of the develop- 
ment of steady flow in the viscous region after this given instant. From this 
limited point of view, it is unnecessary to define the original imposed unsteadi- 
ness further, other than to assume that it allows the flow eventually to approach 
the standard steady-state form. As such, the analysis may be viewed as a first 
step towards determining the unsteady stagnation flow caused by a continuous 
disturbance acting during a finite time interval, such as Watson (1958) treated 
for the case of flow past an infinite plane porous wall. Further work might attempt 
to match the present limiting behaviour to any solution valid for earlier times. 
The problem therefore lies between the two main groups of work. 

Perturbations from the steady velocity field are shown to decay exponentially 
with time, with the characteristic factors in the exponents appearing as eigen- 
values. Such behaviour has already been noted by Rott & Rosenzweig (1960) 
for the case of a two-dimensional stagnation flow when the wall moves im- 
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pulsively in its own plane. This constitutes a somewhat simpler problem because 
the velocity normal to the wall may be shown to be independent of time, and the 
governing equation for the velocity parallel to the wall is linear. The eigenvalues 
were not determined in their analysis. 

2. Two-dimensional stagnation-point flow 
Let x denote the distance along the wall, x the distance normal to it, u and w 

the corresponding components of velocity, t the time, p the pressure, p the den- 
sity, and v the kinematic viscosity. For incompressible flow, the Navier-Stokes 
equations and the equation of continuity are 

(2.1) 

aw - at +u-+w- aw aw = -19+v -+- a2w a Z w  , 
ax a2 paZ (ax2 aJ ( 2 . 2 )  

au aw -+- = 0. ax a2 

The boundary conditions are 

u = w = 0 a t  z = 0, u -+ U(x,t) 

The initial conditions on t are discussed in 3 2.2. 

(2.3) 

as 2-03. (2.4) 

A similarity solution is now 
sought which involves the usual linear dependence on x. The following sub- 
stitutions are made 

(2.5) i 
7 = at, 5 = .[ag(;i)/v]&, U(x,  t )  = axg(.r), 

= axg(.r) $'K, .r), w = - [avq(?)l& $(5, q, 
p = - 1  2P[ ( $ 2 2 -  x 9 (4 + avG(L-3 711 - t p a 2 x 2 m ,  

where primes denote differentiation with respect to 5 and dots denote differen- 
tiation with respect to 7. The Navier-Stokes equations are reduced to the form 

j$'+g$'+:L"''+ (g$')"gs"$$" = g2+g+gz$"', (2 .6)  

- ig$- g$ - $<g$' + g2$$' = +gG' - g2$", (2.7) 

$(0,7) = $'(0,7) = 0,  $'(O3,7) = 1. (2.8) 

with the boundary conditions 

Equation (2.7) merely determines the pressure function, G, once $ is known 
from (2.6) and may therefore be omitted from further consideration. No restric- 
tion has yet been placed on g(7). For instance, if g(7) varies slowly with time, 
+(c, 5) may be expanded in terms of g and its derivatives to yield the same set of 
equations as Moore (1957) obtained for unsteady Falkner-Skan flow, once his 
results are specialized to the stagnation case. The function g(7) is now restricted 
to one which reaches a constant value, gl, at some finite time and remains 
constant thereafter. Then equation (2.6) reduces to 

(2.9) $'" + $4'' - ($')2 + 1 - (g1)-1 $ I  = 0. 
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With 7 = g,?, (3.9) becomes 

y/ + $4“ - ( 4 ’ ) ~  + 1 - a47a7 = 0. (8.10) 

A solution is now sought which represents a perturbation from the steady 
state. Therefore, let 

$4697) = 4 0 ( 0  + &(<, 7 ) ,  (2.11) 

where 40(c) is the steady solution and e represents a small parameter. After 
substitution into (2.10), the resulting equations are 

(2.13) 

(2.13) 

The validity of linearization will be discussed in $2.2.  The boundary con- 

4: + $04;; - (&)2+ 1 = 0,  

g + +o #; - 24; 4; + 4; - a4;/a7 = 0. 

(2.14) 

Initial conditions with regard to time define the particular ‘small-time ’ solution 
to which the present ‘large-time’ solution may be joined and will therefore 
remain unspecified. They will be discussed further in $ 2.2. Accurate values of 
r$o are available from several sources, e.g. Sohlichting (1955, p. 73). 

The perturbation is now assumed to be separable in the form 

41(6,7) = Q(5) K(7) .  (2.15) 

Upon substitution of (2.15) into (2.13), it becomes immediately evident that 
The validity of this assumption is discussed in $ 2.2. 

K(7)must be of the form K ( T )  = e--hT, 

where ( - A )  is a constant. Therefore @(<) satisfies the equation 

a)/’/ + $30 0”- 24; 0’ + 4; CD + A@’ = 0, 

O(0) = CD‘(0) = 0, CD’(c0) = 0. 

(2.16) 

(2.17) 

(3.18) 

Because the external flow is time-independent we expect the time-dependent 
perturbations to be confined to a boundary layer, in which a time lag due to 
viscosity is present. Thus we expect that CD’ -+ 0 exponentially as 6 -+ 00. For 
some ranges of A we shall find that solutions, if they exist, must have this 
behaviour. For other ranges of A, however, it  is necessary to exclude solutions 
for which CD’ --f 0 algebraically as < -+ co and to retain only the exponentially 
decaying solution. The eigenvalue, A, will be seen to have a discrete spectrum 
with these conditions. 

One solution of (2.17) is CD = $;-A, (2.10) 

and the order of the equation may therefore be reduced by the substitution 

OK) = (4; - 4 S(6). 
The reduced equation is 

(2.20) 

(2.21) 1 ] 8”+ [34”+2B04; ---r- +(A-2&)  8’ = 0. [ 4 0 - A  40-h 
8”+ 3?+5b0 4s 
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If we assume that h + 0 or 1, the boundary conditions (2.18) become 

e(o) = ei(o) == 0,  e p q  = 0. ( 2 . 2 2 )  

(In the special case of h = 0, the second condition ( 2 . 2 2 )  must be replaced by 
# ( O )  = 1, the other conditions being unaltered. For h = 1 a different condition 
at  infinity is required.) Equation (2.21) may be simplified by the further trans- 
formation 

which gives 
@(C) = (4; - $(C), ( 2 . 2 3 )  

+h-24A @ =  0,  (2.24) 
11.” + [G 0 + $hO] @ r  + 1 

@ ( O )  = 0, $(a)) = 0. (2 .25)  

(For h = 0 we must impose @ ’ ( O )  = 0 also.) Equation (2.24), subject to the 
homogeneous boundary conditions (2 .25) ,  poses an eigenvalue problem for the 
parameter A. In  the next section we seek to determine bounds on the possible 
regions in the complex plane which can contain A. 

2.1. Qualitative discussion of the eigenvalue, h 
Our aim in this section is twofold. First, we wish to show that the steady-state 
flow is stable with regard to small perturbations of the form (2.15). We therefore 
wish to prove that all possible eigenvalues must have positive real parts. This 
result allows us to construct a solution which describes the final approach to the 
steady state for a t  least a certain class of problems. The particular members 
would, in principle, be defined by the initial conditions. Secondly, we wish to 
indicate by a combination of mathematical and physical arguments that the 
existence of complex eigenvalues is unlikely. 

We first consider possible real eigenvalues. Without loss in generality, we 
may consider the eigenfunctions to be normalized by imposing the condition 
$‘(O) = 1. This effectively guarantees through (2.24) and (2.35) that, for any 
real A, the corresponding eigenfunction will be real. Equation (2.24) is now 
placed in its self-adjoint form through multiplication by (4; - h)-l E$, where 

E = exP(~02Jod6), ( 2 . 2 6 )  

and by integration from 5 = 0 to co 

Integration by parts then yields 

It will be indicated below that the integrated term vanishes and that the integral 
is convergent (if real values of h in the range 0 < h < 1 are excluded). Therefore 
(2 .28)  may be written 

(2.29) 
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Because &' is negative throughout and is positive, the relation cannot be 
satisfied for h < 0. Therefore real values of A, if they exist, are positive. This 
result means that the non-oscillatory perturbations, if they exist, decay to zero 
a s r j c o .  

The asymptotic form of @ is required in order to demonstrate the vanishing 
of the integrated term and the convergence of the integral as [+ CQ. In  this 
region 4, N [- a, where a is a constant. The asymptotic solution of (2.24) may 
be expressed in terms of the parabolic cylinder functions (Whittaker & Watson 
1958, p. 347). If 5 = [- a, then as (+ CQ 

(2.30) 

where the asymptotic form of the above functions has been employed. This 
formula is the basis of the remark, made after (2.18), that it  is necessary to exclude 
an algebraically decaying solution for certain ranges of A. To achieve a boundary- 
layer solution, therefore, C, is equated to zero. Then, for large [, 

(2.31) 

By examining the relevant terms in (2.28) one sees that the integrated term 
vanishes and, because the integrand becomes exponentially small, that the 
integral is convergent as 5 -+ a. The above argument does not apply for A = 1 
but similar conclusions are valid. For the important case of h = 0 it can be shown 
that the integral (2.28) converges at 6 = 0 and that the integrated term vanishes 
at 5 = 0, facts which are clear for other values of A. 

The existence of discrete values of h may be demonstrated, at least for suffi- 
ciently large values of A. Returning to equation (2.24), let 

(2.32) 

Equation (2.24) becomes 

The boundary conditions on 52 are 

Q(0) = 0, 52(CQ) = 0. (2.34) 

For large values of A, (2.33) is, approximately, 

n. + [A  - 24; - &';I 52 = 0. (2.35) 

Because q5, and &, are both positive, the form of (2.35) and the boundary con- 
ditions on !2 fulfil the conditions given by Titchmarsh (1946, p. 113) for the 
existence of a discrete set of eigenvalues, hi ( j  = 1,2, ...), where hi tends to 
infinity as j tends to infinity. 

The eigenvalues have been assumed real up to this point. It will now be shown 
that complex eigenvalues, if they exist, also have positive real parts and give 
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perturbations which decay with time. Also, by establishing certain bounds on 
the eigenvalues, we will see that the existence of complex eigenvalues is unlikely. 
The author is indebted to Dr J. T. Stuart for the following analysis. 

Multiply (2.24) by ($i-h)-lE$*, where $* is the complex conjugate of 7cr, 
and integrate from 5 = 0 to infinity. After an integration by parts, with the 
assumption that the integrated term vanishes a t  the limits, there results 

If we subtract the complex conjugate, we can deduce that 

where A* is the complex conjugate of h and A, is the real part of A. Because 
${ < 0 and 4; 2 0,  the integrand is positive throughout if h, < 0. Hence (2.37) 
can be satisfied only if h = A*, i.e. complex eigenvalues with negative real parts 
do not exist. As in the real analysis, it  can be shown that the integral (2.37) is 
convergent and that the integrated term of (2.36) vanishes at the limits. 

Now perform similar steps with regard to (2.33), i.e. multiply by Q*, etc. 
The following relation is obtained 

It is immediately clear that for Ihl 1 the relation can only be satisfiedif h = A*. 
Hence there are no complex eigenvalues with very large arguments. 

In  order to achieve a more precise bound, we notice that for A, 2 1 the second 
term of the integrandis positive throughout, and therefore seek a condition which 
ensures that the sum of the first and last terms of the integrand is non-negative. 
By use of (2.12), we see that 

3$/// 2 0  + 1$ 2 0 0 -  $1' - 4; - *( 1 - $;2) = - A(5) 6 0. (2.39) 

It can be shown that A(<) has a maximum value of I. Further, the minimum 

(2.40) value of I~);-h1~ is 

where hi is the imaginary component of A. Hence the sum of the first and last 
terms of the integrand will surely be non-negative if h satisfies the condition 

p;--h1&in = (1-hh,)2+hq, 

or 3 3 6 (l-hr)2+h:. (2.42) 

1 6 A, < 1 + ($)4 
Thus, if A, 2 1 + (I)* = 2.2247, the integrand is positive for all hi. If 

the integrand is positive if A: > $ - (1 - &,)2 .  In  these regions, therefore, (complex) 
eigenvalues are not possible. But there may be eigenvalues on the real axis 
(Ai = 0) .  
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In  summary, there can be no eigenvalues in the shaded region of figure 1. 
Further analysis indicates that the boundary curve may be extended for A, < 1 
along a curve which intersects the imaginary axis at hi = 1-33. However, 
figure 1 serves as an indication that complex eigenvalues probably do not exist. 
Calculations, given below, determine the first real eigenvalue as A, = 3.063. 
Hence complex eigenvalues, if they exist, would predominate in describing the 
behaviour of the flow. While the above investigation is general, consider the 
special case of impulsive flow. Here we would expect the flow to behave mainly 

/ 

FIGURE 1. The A-plane. No eigenvalues exist within the shaded area. 

in a monotonic manner, i.e. governed largely by the lowest real eigenvalue, and 
any oscillatory motion to be a lesser effect. In fact, the ‘small-time’ solution of 
Goldstein & Rosenhead (1936) for impulsive flow shows no trace of oscillatory 
behaviour. Hence we might expect h, > 3.063 which, with reference to figure 1, 
is impossible for complex eigenvalues. This physical reasoning, coupled with 
the peculiar distribution of possible complex eigenvalues, gives one some 
confidence that no complex eigenvalues exist. 

It might also be noted that the transformations (2.20) and (2.23) become 
singular at  some value of g for 0 < h < 1 because 4; ranges from zero to one. The 
integral (2.29) then no longer converges. While no strict proof can be offered that 
A > 1, the calculation of A, = 3.063 employed the full third-order equation (2.16). 
Hence one need not be too concerned about the singularity. 

2.2. Determination of the eigenvalues and ei~enfun~tions 
While it is easy to show that (2.29) is a variational integral, which suggests use 
of a variational procedure to calculate the eigenvalues, inaccuracies arise of such 
magnitudes through approximation of the exponential factor E that the varia- 
tional approach is of little use. Hence equation (2.17) will be used to calculate 
the eigenvalues. A Pohlhausen method will be employed to calculate the lowest 
eigenvalue, and then values of the first two eigenvalues and eigenfunctions, 
obtained by use of an electronic digital computer, will be given. 
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To apply a Pohlhausen technique, (2.17) is first integrated to give 

(2.43) 

and, by use of the boundary conditions (2.14), (2.18), (2.43), is placed in the form 

h + 1 = { @@))-I {@”( 0) + 4 Iom $4; 0’ d 5 ) .  

We assume that $6 can be expressed approximately in the form 

(2.44) 

(2.45) 

where the constants b, c, y and a further constant of integration are chosen to 
satisfy 

po(0) = & ( O )  = 0,  &(O) = 1.2326; 

$o(5) N 5- 0.6482 (5  -+ 00). 
(2.46) 

The special values in (2.46) arise from the solution of (2.12) subject to (2.14), 
for which the reader is referred to Schlichting (1955, p. 73). Of the two possible 
values of y which arise, that one is chosen which gives the best fit to known data 
for various values of 6. The resulting values of the constants are y = 1.7799, 
b = 2.3272, c = - 1.0946. The incorrect exponential behaviour of (2.45) as 
5 + 00 is assumed to be unimportant to the evaluation of the integral in (2.44). 

We now assume 0 to be of the form 

@ = Cl/3-l[5e-pg + (e+C - 1)/,8], (2.47) 

which satisfies the boundary conditions (2.18). The incorrect exponential 
behaviour of (2.47) as 6 -+ 00 is also assumed to be unimportant. 

An additional integral relation, which is required to determine /I, is obtained by 
multiplying (2.17) by 0’’ and integrating 

After integration by parts, (2.48) becomes 

(2.49) 

which does not involve A. 

From (2.44) h may now be determined as 
After substituting (2.45) and (2.47) into (2.49), /3 is determined as /3 = 0.544. 

h = 3.03. (2.50) 

Because @’ has no zero in its assumed form, it is thought that (2.50) should be 
an approximation to the lowest eigenvalue. 

A more accurate value of the first eigenvalue and a tabulation of the first 
eigenfunction, and of the second eigenvalue and second eigenfunction, were 
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generously obtained for the author by Mr A. Davey of the National Physical 
Laboratory by use of a Mercury electronic digital computer. The first two eigen- 
values which he found are 

(2.51) 

The main computational difficulty was to ensure that the solutions with algebraic 
decay at  infinity were excluded in favour of solutions with exponential decay : 
this criterion led to the eigenvalues (2.51). 

The very accurate approximation to the first eigenvalue gained by use of the 
Pohlhausen method should be noticed. 

I- A, = 3.0627 & 0.0002, 

h, = 5.022 5 0.002. 

FIGURE 2. The derivatives of the first two eigenfunctions 
for two-dimensional stagnation flow. 

The first two eigenfunctions and their first derivatives are listed in table 1 and 
the first derivatives are plotted in figure 2. One may see from figure 2 that 
@; exhibits no zero between its end points; this suggests that there is probably 
no lower real eigenvalue. Mr Davey was unable to find any real eigenvalue 
between h = 1.5 and h = A, but did not examine lower real or complex values. 
However, in view of the shape of @; and the earlier reasoning concerning com- 
plex values, we may assume that (2.51) gives the lowest two eigenvalues. 

We have considered thus far the solution to be represented as a linear per- 
turbation from the steady solution (see (2.11)). If the problem were truly linear, 
we could express the complete solution as 

m 

$a> 7) = 90(5) + x A, @j(L hj) e-/\j7, (2.52) 

where the first two eigensolutions are given above. The constants A j  would in 
principle be determined from the initial conditions. This expansion is precluded, 

j=l 



A, = 3.0627 0.0002 h, = 5.022 0.002 

5 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1-5 
1.6 
1.7 
1.8 
1.9 
2.0 
2- 1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3-0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5-5 

@ I  

0.000 
0.005 
0.020 
0.044 
0.077 
0.118 
0-165 
0.219 
0-277 
0.338 
0.40 1 
0.464 
0.528 
0.590 
04350 
0.707 
0.761 
0.811 
0.856 
0.897 
0.934 
0.967 
0.995 
1.020 
1.041 
1.059 
1.074 
1.086 
1.097 
1-105 
1.112 
1.117 
1.121 
1-124 
1.127 
1-129 
1.130 
1.131 
1.132 
1.133 
1.133 
1.133 
1.133 
1.134 
1-134 
1-134 
1.134 
1.134 
1.134 
1.134 
1.134 
1.134 
1.134 
1.134 
1-134 
1.134 

Q; 

0.000 
0.100 
0.196 

0.371 
0.444 
0.507 
0.558 
0.596 
0.622 
0.636 
0.638 
0.630 
0.612 
0-586 
0.554 
0.517 
0.477 
0.434 
0.390 
0.347 
0.305 
0.266 
0.229 
0.195 
0.164 
0.136 
0.113 
0.092 
0.074 
0.059 
0.047 
0.037 
0-028 
0.022 
0.017 
0.012 
0.009 
0.007 
0.005 
0.004 
0.003 
0.002 
0.001 
0.001 
0.001 
0.000 
0.000 
0-000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.287 

(D; 
1.000 
0-985 
0.942 
0.876 
0.785 
0.685 
0.569 
0.447 
0.321 
0.197 
0.078 

- 0.032 
-0.132 
- 0.219 
- 0.291 
- 0.349 
- 0.391 
- 0.419 
- 0.433 
- 0.435 
- 0.426 
- 0.409 
- 0.385 
- 0.356 
- 0.324 
- 0.290 
- 0.256 
- 0.223 
- 0.192 
- 0.162 
- 0.136 
-0.112 
- 0.092 
- 0.074 
- 0.059 
- 0.046 
- 0.036 
- 0.028 
- 0.021 
- 0.016 
- 0.012 
- 0.009 
- 0.006 
- 0.005 
- 0.003 
- 0.002 
- 0.002 
- 0.001 
- 0.001 
- 0.001 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

% 
0.000 
0.005 
0.020 
0.043 
0.075 
0.113 
0.156 
0.202 
0.248 
0.294 
0.338 
0.377 
0.41 1 
0.439 
0.460 
0.474 
0.480 
0.481 
0.475 
0.463 
0.448 
0.429 
0.407 
0.384 
0.360 
0.336 
0.313 
0.291 
0.27 1 
0.253 
0.236 
0.222 
0.209 
0.199 
0.190 
0.182 
0.177 
0,172 
0.168 
0.165 
0.163 
0.161 
0.159 
0.159 
0.158 
0.157 
0.157 
0.157 
0.156 
0-156 
0.156 
0.156 
0.156 
0.156 
0.156 
0.156 

a: 
0.000 
0.099 
0.194 
0.279 
0.351 
0.407 
0.446 
0.466 
0.466 
0.449 
0.416 
0.368 
0.310 
0.244 
0.174 
0.103 
0.034 

- 0.030 
- 0.087 
- 0.136 
- 0.176 
- 0.205 
- 0.225 
- 0.236 
- 0.239 
- 0.235 
- 0.225 
-0.211 
- 0.194 
- 0.174 
- 0.154 
-0.134 
-0.115 
- 0.097 
- 0.081 
- 0.066 
- 0.054 
- 0.043 
- 0.034 
- 0.026 
- 0.020 
- 0.015 
- 0.011 
- 0.008 
- 0.006 
- 0.004 
- 0.003 
- 0.002 
- 0.002 
- 0.001 
- 0.001 

o*ooo 
0~000 
o*ooo 
0.000 
0~000 

a); 
1.000 
0.975 
0.904 
0.792 
0.647 
0.477 
0.292 
0.102 

- 0.084 
- 0'257 
- 0.408 
- 0.533 
- 0.626 
- 0.685 
-0.711 
- 0.705 
- 0.670 
-0.611 
- 0.534 
- 0.444 
- 0.347 
- 0.249 
- 0.154 
- 0.067 

0.009 
0.073 
0.123 
0.160 
0.185 
0.198 
0.201 
0.197 
0.187 
0.172 
0- 155 
0-136 
0.117 
0.099 
0.083 
0.068 
0.055 
0.043 
0.034 
0.026 
0.020 
0.015 
0.011 
0.008 
0.006 
0.004 
0.003 
0.002 
0.001 
0.001 
0.001 
o*ooo 

TABLE 1. The first two eigenfunetions and their derivatives 
for two-dimensional stagnation flow. 
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however, by the non-linearity of the governing partial differential equation 
(2.10), and additional terms would be required in the expansion of #(<,7) in 
order to account for the interaction between the eigensolutions. The analytic 
determination of the constants for the non-linear problem is not clear. A simple 
numerical match could be attempted in the case of impulsive motion to the 
results of Goldstein & Rosenhead (1936)) who developed a solution valid for 
small times by an expansion in powers of time. The problem of matching, how- 
ever, will not be considered further in this paper. 

An examination of the series (2.52) or its non-linear counterpart suggests 
that they are convergent for T -+ co with 5 fixed, and in this limit the solution 
described in this paper certainly seems to be valid. If, however, we consider the 
limit 5 + m with 7 fixed it is not clear that the series are convergent; this can be 
seen for the series (2.52) from the asymptotic behaviour (2.31) for each possible 
value of A. In  order to decide about convergence it would be necessary to solve 
the initial-value problem and thus to determine the constant coefficients in the 
series. In  the absence of such information, however, it is suggested that the eigen- 
solution series is probably an ‘unsuitable’ expansion of the actual solution (in 
the sense, by way of analogy, that exp ( - 4x2 + 6x2) can be expanded as 

m 

n= 0 
c ~ x 2 n  e+’/n ! , 

which gives incorrect behaviour at  infinity if only a finite number of terms is 
known). 

The solution obtained here satisfies the specified boundary conditions at  
infinity, and it seems unlikely that an incorrect exponential behaviour there 
greatly affects the solution for finite values of 5. The difficulty discussed has 
arisen partly because the type of linearization used to derive equation (2.13) is 
invalid when 5 -+ 00 for r fixed, and partly because of the chosen method of 
solution of the linearized problem (2.13) in terms of eigensolutions derived after 
the separability assumption (2.15). 

The above results may be of use in connexion with certain three-dimensional 
problems. For instance, consider the flow near the line of stagnation points of 
an infinite cylinder whose axis is normal to the free stream. When the cylinder 
undergoes unsteady motion of the above type in both the free stream and axial 
directions, the axial flow possesses additional eigensolutions but the chordwise 
flow is still governed by the above result. 

3. Axially symmetric stagnation flow 
The analysis in this case is quite similar to the preceding development, and 

therefore only the major steps are indicated. If r and z denote, respectively, the 
radial and axial directions, and v, and vs denote the velocity components in those 
directions, the momentum equation in the radial direction for the case of axial 
symmetry is 
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The boundary conditions are 

The following substitutions are made 
v, = vz = 0 at z = 0,  v, -+V,(r,t) as z -+ co. (3.2) 

(3.3) 

7 = at, 5 = z[ag(?)/v]B, V,(r,t) = argf?), 

vz = -2[avg(?)I' #(<7 ?I7 

p = -1 zp[a2r2g2(?) + avG(C, ?)I - +pa2r2g(T). 
vr = arg (7) $'(C> 717 

A, = 3.9828 ? 0.0003 

5 
0.0 
0.1 
0.2 
0.3 
0.4 
0-5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2-6 
2.7 
2-8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

@l 

0~000 
0.005 
0.020 
0.044 
0.076 
0.115 
0.160 
0-208 
0.259 
0.311 
0.361 
0.409 
0.454 
0.494 
0.530 
0-561 
0.588 
0.609 
0.627 
0.641 
0.652 
0.660 
0.666 
0.671 
0.674 
0.676 
0.678 
0.679 
0.679 
0.680 
0.680 
0.680 
0.680 
0.680 
0.681 
0.681 
0.681 
0.681 
0.681 
0.681 
0.681 

@{ 
0.000 
0.099 
0.195 
0.282 
0.359 
0-422 
0.469 
0.500 
0.513 
0.511 
0-494 
0.465 
0.427 
0.383 
0.335 
0.287 
0.240 
0.197 
0-157 
0.123 
0.095 
0.071 
0.053 
0.038 
0.027 
0.018 
0.012 
0.008 
0.005 
0-003 
0-002 
0.001 
0.001 
0.000 
0.000 
o*ooo 
0-000 
o*ooo 
0.000 
0.000 
0.000 

@; 
1.000 
0.980 
0.922 
0.827 
0.702 
0.553 
0.389 
0.220 
0.054 

- 0.100 
- 0.232 
- 0.339 
- 0.417 
- 0.465 
- 0.484 
- 0.479 
- 0.454 
- 0.415 
- 0.366 
- 0.314 
- 0.261 
-0.211 
- 0.166 
- 0.128 
- 0.096 
- 0.070 
- 0.050 
- 0.035 
- 0.024 
- 0.016 
- 0.010 
- 0.007 
- 0.004 
- 0.002 
- 0.001 
- 0.001 

0~000 
o*ooo 
o*ooo 
0-000 
o*ooo 

r-- 

@!z 
0.000 
0.005 
0.019 
0.042 
0.072 
0.106 
0.142 
0.177 
0.209 
0.236 
0.256 
0.268 
0-273 
0.271 
0.263 
0.250 
0.233 
0-214 
0.195 
0.176 
0.158 
0- 142 
0.129 
0-117 
0.108 
0.110 
0.096 
0.092 
0.089 
0.086 
0.085 
0.084 
0.083 
0.083 
0.083 
0-083 
0.082 
0.082 
0.082 
0.082 
0.082 

A, = 7.86 ? 0.01 
-_h_--_\ 

@; 

0.000 
0.099 
0.190 
0.266 
0.322 
0.353 
0.359 
0.339 
0.296 
0.236 
0.165 
0.089 
0.014 

- 0.054 
-0.110 
- 0.152 
- 0.180 
- 0.193 
- 0.194 
- 0.185 
- 0.168 
- 0.147 
- 0.125 
- 0.102 
- 0.081 
- 0.063 
- 0.047 
- 0.035 
- 0.025 
- 0.017 
-0.012 
- 0.008 
- 0.005 
- 0.003 
- 0.002 
- 0.001 
- 0.001 

0.000 
0.000 
0.000 
o*ooo 

@; 
1.000 
0.961 
0.847 
0.669 
0.441 
0.185 

- 0.076 
-0.318 
- 0.521 
- 0.668 
- 0.750 
- 0.766 
- 0.720 
- 0.625 
- 0.496 
- 0.349 
- 0.201 
- 0.066 

0.047 
0.133 
0.190 
0.220 
0.228 
0.219 
0.198 
0.170 
0.141 
0.112 
0.086 
0.064 
0.047 
0.033 
0.022 
0.015 
0.010 
0.006 
0.004 
0.002 
0.001 
0.001 
0~000 

TABLE 2. The first two eigenfunctions and their derivatives for axially symmetric 
stagnation flow. 
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The momentum equation (3.1) becomes 

g@/ + gd' + $<(j@" + (g@')2 - 2g2@@" = 92 + g + g2@", 

with the boundary conditions 

@(0,7) = (b1(0,7) = 0, qY(C0,F) = 1. 

O6 t / . 

FIGURE 3. The derivatives of the first two eigenfunetions 
for axially symmetrical stagnation flow. 

We again consider the case when g(?) reaches a steady value and look for a solu- 
tion of (3.4) which represents a perturbation on the axially symmetric steady- 
state solution, @,,(<). In  complete analogy to (2.17) and the steps preceding it, 
the equation for the perturbation is 

wfl + 2$,, - 24; + 2& @ +A@' = 0. (3.6) 

@(6) = (@;-$48(6). (3.7) 

The order of equation (3.6) may be reduced by use of the substitution 

One may then prove the non-existence of complex eigenvalues with negative 
real parts and the existence of a discrete set of eigenvalues for sufficiently large 
h by the methods of § 2. 

A Pohlhausen method may again be applied to estimate the first eigenvalue. 
The integral form of (3.6) is 

A+ 2 = { @ " ( O )  + 6 /: @ ' d { } / @ ( c ~ ) .  (3.8) 

With reference to (2.45), corresponding values of the constants for this case 
are y = 2.0826, b = 2.8532, c = - 1.5412, and, with reference to (3.47), 
/3 = 0.6977. The result is h = 4.01. (3.9) 
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The first two eigenvalues, obtained by Mr Davey on the Mercury digital 
computer, are A, = 3.9828 -f: 0.0003, 

A, = 7.86 0.01. 
(3.10) 

As before algebraic decay of the solution at  infinity is excluded in favour of 
exponential decay. The corresponding eigenfunctions are given in table 3, and 
their first derivatives are shown in figure 3. One must, of course, make the same 
qualifications concerning these eigensolutions as were made in the two-dimen- 
sional case. 

The agreement between the Pohlhausen result for the first eigenvalue and the 
computer calculation is again excellent. 

4. Impulsive motion of a flat plate normal to its leading edge 
Discussion of the above problem was begun with the knowledge that Professor 

C. C. Lin had demonstrated sometime ago in unpublished work that related 
behaviour was impossible for impulsive Blasius flow. An independent proof is 
offered here. 

Consider the boundary-layer equations for impulsive Blasius flow 

au au au asu 
at +++”- ax aZ = v- 

au aw 
ax ax 

- 

-+- = 0. 

The boundary conditions are 

u = w = 0 for z = 0, x 2 0, all t ,  

u - f  U for z -f co, all x, all t, 
t 2 0 ,  u=uo; t < 0 ,  u = u = o .  

The following substitutions are made 

n = z(Uo/vx)+, r = Uot/x, 
II. = (UOWt 9(% 71, 

u = a@/az, w = -a@lax. 

(4.1) 

(4.3) 

If q50(n) represents the steady-state solution, consider a perturbation on #o which 
is assumed to be separable 

$(%7) = 4o(n) +s$,(n)A(4. (4.4) 

A$;” i- -t iA& +rA[$;)$; - &$,I -A$; = 0, (4.5) 

The equation for the perturbation is 

A(0)  = &(O) = #;@) = 0. (4.6) 

If A(7) were assumed to be an exponential function of 7, i.e. A(7) = eO7 where 
w is a constant, the term in brackets in (4.5) would be predominant at large times. 
If  only this term were solved for a first approximation, a non-trivial solution 
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could not satisfy the boundary conditions (4.6). Hence A(?) is assumed in the 
form 

so that 
(4.5) reduces to 

The order of (4.7) may be reduced by the substitution 

which gives 

with the boundary conditions 

A(7) = 70 

N A. Then, for large T, the last term in (4.5) is of smaller order, and 

$4: + $$o$; + $$; $1 + w($; $I - 4; $1) = 0. (4.7) 

$1 = $%o, (4.8) 

(4.9) 

0’(co) = 0, S’(0) = finite, non-zero. (4.10) 

o” + {3(4;/$;) + +$,,I 0“ +{(+:I$;) + w$;} 0’ = 0,  

Assuming w to be real, we multiply (4.9) by (~)h)~E6’,  where 

(4.11) 

Because +; 0 and $”’ 6 0, w must be positive. Thus the perturbations become 
infinite as 7 .+ co, and the assumption of linearization is invalidated. It may also 
be shown by an analysis similar to that in § 2.1 that there are no possible complex 
values of w. 

Since one expects the solution to approach the steady Blasius result, it  appears 
that one cannot study the approach to the steady state by means of a linearized 
perturbation of the separable type (4.4). This is in distinct contrast to the case 
of stagnation point flow discussed earlier. The result generalizes Stewartson’s 
(1951) statement that +(n, 7) cannot be expanded as an inverse power series in 
T where the coefficient of each 7n is only a function ofn. 

After completing this paper, the author has become aware of the work by 
Lam & Rott (1960), who gave a related eigenfunction analysis for the boundary- 
layer equation. 
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